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ABSTRACT

Multicore processors have been popular for years, and the
industry is gradually shifting towards the era of manycore
processors. Single-thread performance of microprocessors is
not growing at a historical rate, but the existence of a num-
ber of active processes in the computer system and the con-
tinuing development of multi-threaded applications benefit
from the growing core counts to sustain system throughput.
This trend brings us a situation where a number of paral-
lel applications simultaneously being executed on a single
system. Since multi-threaded applications try to maximize
its throughput by utilizing the whole system, each of them
usually create equal or larger number of threads compared
to underlying logical core counts. This introduces much
greater number of threads to be co-scheduled in the entire
system. However, each program has different characteristics
(or scalability) and contends for shared resources, which are
the CPU cores and memory hierarchies, with each other.
Therefore, it is clear that OS thread scheduling will play a
major role in achieving high system performance under such
conditions. We develop a sophisticated scheduler that (1)
dynamically predicts the scalability of programs via the use
of hardware performance monitoring units, (2) decides the
optimal number of cores to be allocated for each program,
and (3) allocates the cores to programs while maximizing
the system utilization to achieve fair and maximum perfor-
mance. The evaluation results on a 48-core AMD Opteron
system show improvements over the Linux scheduler for a
variety of multiprogramming workloads.
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1. INTRODUCTION
The end of clock frequency scaling has led the processor

architecture design towards multiple processors on a chip
(known as multicore processors or CMPs) which exploits
thread level parallelism to improve performance [14]. The
trend of increasing the core count tends to continue and push
the industry and researchers to face manycore processors in
the near future [24, 27]. The shift from single-core to mul-
ticore has broaden the range of applications, and the focus
of research has shifted from executing one single-threaded
application on a system to either (1) concurrently execut-
ing multiple single-threaded applications or (2) running one
multi-threaded application on a system. However, consid-
ering that not all programs can best utilize the potential
of manycore architectures, further shift towards manycore
processors will force us to manage dozens of simultaneously
executed programs which are heavily multi-threaded.

In such a scenario, shared resource contention is one of the
most fundamental and important problems which have to be
solved. Prior work have showed that contention should be
minimized by (1) isolating (or partitioning) shared resource
accesses as much as possible, and at the same time, (2)
allocating appropriate amount of shared resources to each
program [23]. For single-threaded multiprogramming work-
loads, trying to reduce contention at the last level cache (LLC),
memory controller or the prefetcher which lie down in the
memory hierarchy is the main objective [2, 5, 6, 12, 15, 19,



30]. However, memory hierarchy is not the only shared re-
source when scheduling multi-threaded applications. Paral-
lel programs tend to be executed by creating equal or larger
number of threads than the underlying logical core counts
to fully make use of the system. Therefore, the comput-
ing resources (i.e., CPU cores) which directly contribute to
performance is the most important shared resource that we
have to carefully allocate to each program in order to achieve
high performance.

Allocation should be done dynamically according to pro-
gram’s characteristics at the point of creation or termination
of programs, and therefore the runtime layer such as the OS
scheduler or the programming language runtime system [16,
21] will play a major role in it. Traditional OS scheduler tries
to assign equal CPU time to each thread to ensure the fair-
ness property. Therefore, we can consider that CPU cores
are evenly shared among each program, controlled by the
OS scheduler. This approach is simple and fair from an OS
point of view, however, there is still room for improvement
and we can still perform better in terms of performance by
taking the scalability of each program into account.

In this paper, we propose a sophisticated OS scheduler
for multi-threaded multiprogramming workloads on many-
core processors. The proposed scheduler is able to opti-
mize against various performance metrics which can be de-
termined by either the user or the system software. Sev-
eral performance metrics are used to evaluate the multi-
programming workloads in the literature: total through-
put, weighted speedup [28], harmonic mean of the per pro-
gram speedup [18], or average normalized turnaround time
(i.e., execution time) or ANTT [11]. We insist that the
manycore OS scheduler should be flexible enough to op-
timize against different needs (or metrics) and the key to
achieve this is to take the scalability of each program into
account. The principle behind our technique is that the
speedup obtained from multi-threading on manycore proces-
sors heavily depends on several details of the program, and
are quite different between them. For example, some pro-
gram might double its performance by doubling the number
of cores, while other might achieve no performance improve-
ment or even degrade its performance. Therefore, we can
achieve better performance than the evenly (or fairly) par-
titioned allocation which is achieved in the Linux scheduler
by allocating optimal number of cores to each program ac-
cording to their scalability.

The main contributions of this paper include the following:

• We find that state-of-the-art Linux default scheduler
performs poorly in a multi-threadedmultiprogramming
environment because of lacking the consideration of
scalability of its scheduled programs.

• We propose a scheduling algorithm which predicts the
scalability of multi-threaded applications to dynami-
cally allocate the appropriate number of cores to each
program in order to optimize system performance. We
also introduce a couple of sophisticated enhancements
to the scheduler which attempt to get the most out of
manycore environments.

• We implement a practical user level scheduler called
SBMP (pronounced S-Bump) scheduler which (1) re-
quires no changes to the OS kernel, (2) works on exist-
ing Linux systems and uses existing hardware perfor-

mance monitoring units (PMUs), and (3) works with
any unmodified application binaries.

• We evaluate the proposed SBMP scheduler with an
AMD 48-core system, which shows our design well out-
performs the Linux default scheduler for a series of
multiprogramming workloads comprised of emerging
PARSEC benchmark suite [4].

The remainder of the paper is structured as follows. Next
section motivates our work on developing scalability-based
manycore partitioning scheduler (SBMP scheduler) by show-
ing the poor performance of Linux default scheduler when
multiple multi-threaded workloads are simultaneously exe-
cuted on a manycore environment. Section 3 describes our
scheduler algorithm and implementation in detail along with
some novel improvements added to enhance our scheduler
design. Section 4 explains our evaluation framework and
Section 5 shows the performance of the proposed scheduler
with wide variety of evaluations. Section 6 introduces re-
lated work, and finally the conclusions and future work are
stated in Section 7.

2. MOTIVATION
Figure 1 shows how Linux default scheduler performs poorly

in a multi-threaded multiprogramming environment. The
figure shows performance result of four multi-threaded ap-
plications (canneal, ferret, raytrace and streamcluster

chosen from PARSEC benchmark suite) when they are si-
multaneously executed on a 48-core symmetric multi-processor
system∗. Bars in Figure 1 indicate the normalized turnaround
time (NTT) [11]. NTT is a lower-is-better metric which
has a value larger than or equal to one†, and quantifies the
turnaround time slowdown due to multiprogrammed execu-
tion. Right most group of bars shows the average NTT (ANTT).
ANTT is a reciprocal of the commonly used harmonic mean
metric of the relative throughputs under multiprogramming
environment compared to their solo-runs [18]. ANTT has a
system-level meaning rather than the harmonic mean met-
ric, and we believe it is a good indicator to represent system
performance in multiprogramming environments. There-
fore, we use this metric throughout this work. The results of
Linux default scheduler and the best static partitioning are
shown in the figure.

For these applications, the best partitioning (or core allo-
cation) is: 12 cores for canneal and raytrace each, 18 cores
for ferret, and six cores for streamcluster. Note that all
programs create 48 threads (or more, according to the pro-
gram) in order to fully utilize the processor, and threads
of each program are packed onto the specified number of
cores [7] when partitioned. The best partitioning was ob-
tained by trying all the possible allocations. There are sev-
eral ways to assign the cores to programs even the number
of cores to be assigned are the same. Figure 3 shows two
possible assignments which are (a) distributing or (b) cen-
tralizing the threads on the system. We have compared the
ANTT for these two types of assignments for all the work-
loads and found that centralizing the threads gives higher or

∗
Figure 2 shows the base node architecture of the evaluation sys-

tem we use throughout this paper. It consists of four CMPs with
each CMP having 12 core multi-chip module processor consisting of
two six core dies. Further details of the experimental environment is
described in Section 4.

†
Note that the origin of all the graphs which show the NTT begins

with one.
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Figure 3: Two possible program-to-core assignments
of best partitioning.

at least the same performance in most cases. This is quite
intuitive because of the low latency of accessing the shared
data (including coherency messages) and minimized inter-
ference or contention between programs. Therefore, we use
the centralized assignment of cores throughout this work.

Also, we decided to use the processor die in Figure 2 as
a minimum unit of allocation to programs. That is, each
program is provided a number of cores which is a multiple
of six in the experimental platform. This restriction still
leaves us plenty of room for optimization, while eliminating
the unexpected contention by potentially giving exclusive
use of the portion of LLC which is on the same die. We can
say that the memory subsystem is partitioned as well as the
cores, which means that the program with a greater num-
ber of cores also gets larger amount of LLC. More sophisti-
cated memory managements such as applying page coloring
technique [17] in order to give larger amount of LLC to a
program with fewer number of cores can be considered, but
those optimizations are left for future work, and we focus
on the scheduling of CPU cores in this study. Note that
we dedicate each core to only a single program at a time,

which means that no two programs share the same core‡.
These partitioning methods are also used in the proposed
scheduler.

We can see the poor ANTT of the Linux default sched-
uler from Figure 1 which is 2.04, where the ANTT of best
static core allocation is 1.38, and significantly improves over
the Linux scheduler. To understand the reason of the result
shown in Figure 1, we display the scalability of the PARSEC
applications in Figure 4. The x-axis indicates the number of
cores allocated and y-axis shows relative performance to the
maximum. The benchmarks are classified into three groups
named with colors according to their scalability characteris-
tics, namely Green, Yellow and Red, which are used in the
later section for discussions. The numbers on top of each
graph show the maximum speedup obtained compared to
the case when a single core is assigned.

The key factor of this improvement is to appropriately
controlling the number of cores to be assigned to each ap-
plication by considering their scalability. This can be seen
from the scalability curve of the evaluated four programs, es-
pecially ferret and streamcluster. The best partitioning
allocates 18 cores to ferret and six cores to streamclus-

ter. Streamcluster achieves its maximum performance at
six cores so there is no reason to allocate greater number of
cores from a performance point of view. Other three pro-
grams show similar shapes of scalability curve, however, the
number on top of the graph showing the maximum speedup
against a single core assignment is the largest for ferret

which is 17.22x. Therefore, it is beneficial to give the re-
source to ferret to maximize the multiprogramming per-
formance. This result motivates us that the scalability of
programs should be taken into account by the OS scheduler
to achieve good performance.

We have seen the potential performance improvement of
static partitioning approach thus far, however, it is not prac-
tical to apply the static scheduling in a general purpose OS
scheduler because: (1) the best core assignment cannot be
easily obtained in advance without the knowledge of the
scalability of programs a priori, (2) the best core alloca-
tion might change during runtime because applications can
be composed of several phases which shows different scala-
bility characteristics, and (3) applications are dynamically
executed on a general purpose OS so that we do not know
which applications will be co-scheduled at what time. We
address the above issues by dynamically detecting the pro-
gram’s scalability along with several enhancements which
are stated in Section 3.

3. SCHEDULER DESIGN
We designed and implemented SBMP scheduler, a scalability-

based manycore partitioning scheduler which achieves high
system performance under multi-threaded multiprogramming
execution. SBMP scheduler dynamically predicts the scal-
ability of each multi-threaded application by using a sim-
ple performance model and select the appropriate amount
of cores to be assigned. The model is obtained by slightly
modifying the Amdahl’s law equation. The key idea behind
this allocation is that, we do not give fair amount of CPU
time and resources as in the traditional OS scheduler, in-
stead we provide the resources considering their scalability,

‡
Later in Section 3, we propose an enhancement to the scheduler

which relaxes this constraint to allow up to two programs sharing
each core to improve performance.
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Figure 4: Scalability of the evaluated PARSEC benchmarks.

giving more resources to programs that make more use of
them. That is, SBMP scheduler attempts to balance the uti-
lization of resources, not the physical amount of resources.
This section provides the scheduling overview, as well as the
description of the prediction model and its usage, and the
scheduling algorithm and implementation of SBMP sched-
uler in detail.

3.1 Scheduler Overview
The basic overview of the scheduling algorithm is shown in

Figure 5. The top view of the algorithm is fairly simple con-
structing a loop which consists of the following: (1) SBMP
scheduler decides to change the core partitioning when it
detects that the optimal partitioning has changed, (2) pre-
dicts the scalability of the target program, and (3) calculates
the optimal core allocation based on the optimization metric
and re-schedules the programs according to it. The detail
of (1) through (3) is discussed in Subsections 3.3, 3.2, and
in the following paragraphs of this subsection, respectively.
Subsection 3.4 describes a key improvement technique to
the SBMP scheduler which is called Core Donation which
aims to maximize the CPU utilization ratio by relaxing the
constraint that each core is exclusively used by a single pro-
gram.

As stated in Section 2, we target in optimizing (minimiz-
ing) the average normalized turnaround time or ANTT met-
ric because we believe it is a good metric to represent system
performance of multiprogramming workloads. However, the
key idea of the proposed scheduler which predicts and uti-
lizes the scalability is not only restricted for optimizing the
system against ANTT, but can be used to target different
performance metrics such as the weighted speedup metric, if
required. This can easily be accomplished by changing the
function which seeks for the optimal allocation inside the
scheduler.

ANTT is computed as

ANTT =
1

n

n∑

i=1

NTTi =
1

n

n∑

i=1

CMP
i

CSP
i

(1)

where CSP
i and CMP

i denote the number of clock cycles
to execute a program i under solo and multiprogrammed
runs, respectively. Minimizing ANTT means that all the
programs are fairly achieving high performance compared
to its peak performance (achievable only when occupying

Need to predict 
scalability?

Predict scalability
Yes

Core partitioning (allocation)

(1) (2) (3)

Figure 5: Algorithm overview of SBMP.

the whole system by itself). Therefore, programs that scale
almost linearly (such as the applications labeled Green in
Figure 4) are removed from the co-scheduling candidate and
run in isolation, or gang-scheduling [3].

SBMP scheduler maintains a table called scalability-table
for each multi-threaded program which consists of pairs of
values: each pair consists of a key and a value where key
stores the number of cores to be allocated, and the value
stores the relative performance against its peak when exe-
cuted at the key number of cores. Note that having this
table is identical with being able to draw the scalability
curve shown in Figure 4. The value in the table represents
CMP

i /CSP
i in Equation (1), so the scheduler is able to com-

pute ANTT for different core allocations during runtime.
The number of possible core assignments is computed as
(Ncore− 1)!/(Ncore −Napp)!(Napp − 1)! where Ncore > Napp

holds, Ncore and Napp being the number of cores in the
system and number of programs that are being scheduled,
respectively. It becomes unpractical to calculate and search
through all the possible ANTT values to find the optimal al-
location when Ncore and/or Napp grow. Therefore, we use a
simple hill climbing algorithm similar to the technique used
in [8] to find the near optimal assignment.

3.2 Predicting the Scalability
SBMP scheduler needs to know the relative performance

against its best solo run for all the co-scheduled programs
during runtime to perform its scheduling. We propose to use
the number of cumulative retired instructions of the program
to indicate the performance. That is, we store the cumula-
tive retired instructions per second (IPS) to the value of
the scalability-table associated with each program. The key
notion behind this is the fact that changing the core as-
signments does not affect the total number of instructions.
Figure 6 supports our idea. It shows the number of cores
allocated on the x-axis and the number of total instructions
on the y-axis for PARSEC benchmarks. All the bars are ob-
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Figure 6: Total number of dynamic instructions of PARSEC benchmarks for different core assignments.

tained by spawning 48 threads, assuming SBMP scheduling.
We can see that the applications whose number of instruc-
tions varies the most are canneal and dedup which shows
slight variation of up to 8% in the worst case, which is still
acceptable for our purpose considering measurement errors.
Instruction counts of all the other programs are stable with
respect to the number of cores. Therefore, IPS is a perfect
indicator to measure the scalability of a program.

As IPS values can be easily obtained by performance mon-
itoring units (PMUs) which come with most of today’s mi-
croprocessors, it is possible for the scheduler to directly mea-
sure the values to fill the scalability-table. For example,
the scheduler can dynamically change the allocations during
runtime, and run the program for a fixed amount of time to
obtain the values. However, we found out that the over-
head of measuring the IPS in this manner is not negligible:
earning a stable IPS value for a new assignment requires the
OS to actually migrate the threads to the new allocation and
run for a while to warm up the caches and branch predictors.
This requires up to few hundred milliseconds per assignment
in the evaluated environment. Recall that we use the pro-
cessor die in Figure 2 as a minimum unit of allocation, so
there are eight (48 divided by six) possible allocations to a
single program. Even after careful tuning of the software, it
took over three seconds to fill the table, and this overhead
will become larger according to the increasing number of
cores in the future. Therefore, we introduce a simple model
to predict the IPS values. By using the model, we can com-
pute the IPS to fill the scalability-table by sampling the IPS
for only a few allocations.

The prediction model we use in this work is the following.

IPSN1

IPSNcore

= α+
β

Ncore

+ γNcore (α+ β + γ = 1) (2)

IPSN1
and IPSNcore

indicate the IPS when allocated a sin-
gle core and N cores, respectively. The left side of the equa-
tion represents the relative turnaround time against single
core execution, and the left two terms of the right side is
the same as that of Amdahl’s law equation [1]. Recall that
Amdahl’s law is a simple yet powerful model that models
the scalability of a parallel program. The formula is quite
intuitive and the scalability curve is known to fit well with
real world programs. However, as can be seen from Figure 4,
the scalability of some applications tend to not only saturate
at some point but also degrade its performance by adding
more number of cores. This cannot be represented by the
original Amdahl’s law. Therefore, we added the last term
γNcore which we expect to represent some overhead asso-
ciated with adding more number of cores. The condition
equation in the parentheses follows the original condition of
the Amdahl’s law that the sum of the coefficients equals one,
and this is because we assume that the parallel portion of
the program represented as β in the original equation, can
be divided into two sections where one can be parallelized
( β

Ncore

) and the other adds an overhead (γNcore). There-

fore, we set the condition as the sum of α, β and γ equals
one.

To obtain the values of the coefficients, we use the least
squares approach. Therefore, we need to at least collect the
IPS with three configurations (two different configurations
in addition to single core execution) in order to obtain the
three coefficients because Equation (2) has two individual
parameters.

3.3 Re-partitioning Algorithm
As seen from Figure 5, SBMP scheduler tries to change

the core partitioning when it considers that the optimal allo-
cation has changed during the multiprogramming execution.
There are mainly two events that invokes the SBMP sched-
uler to re-partition during execution. Those events are (1)
creation or termination of a program and (2) phase transi-
tion detected in any of the programs.

The first is natural, because it means that the multipro-
gramming workload has changed, and thus there is a chance
to find a better partitioning. When any of the program fin-
ishes its execution, SBMP simply calculates the optimal al-
location using the existing scalability-table and allocates the
cores according to it. When a new program is created, then
SBMP scheduler predicts the scalability of it as described in
Subsection 3.2, and performs the partitioning.

The second is more aggressive which utilizes the infor-
mation obtained online to dynamically find a better core
assignment. Programs are typically composed of different
execution phases which show different characteristics, and
SBMP scheduler attempts to keep up with the optimal core
partitioning. Researchers have tried to detect phases to per-
form dynamic optimization, and there exists different defini-
tion of phases according to the optimization techniques. In
this paper, we consider phase as a region of program having
different scalability.

Figure 7 shows an example execution trace of x264 show-
ing the execution phases having different scalability. x-axis
and y-axis of Figure 7 (a) represents time in milliseconds
and the cumulative execution cycles, respectively. The thick
dotted line on top of the figure shows the maximum avail-
able cumulative cycles which is equivalent to the cumulative
execution cycles when the CPU is 100% utilized. The cumu-
lative cycles is sampled every 50ms. CPU utilization ratio
is obtained by dividing the cumulative execution cycles by
the maximum available cumulative cycles. We can see from
the figure that the trace can be divided into three regions or
phases by focusing on the cumulative execution cycles (iden-
tical to CPU utilization), which we named phase A, B and C.
Three figures of Figure 7 (b) on the right side show the scala-
bility for those three phases. X-axis indicates the number of
cores allocated and the y-axis shows the relative performance
against a single-core execution. We can see similar trends for
phases A and C which show a gentle curve giving the max-
imum performance at the maximum number of cores, and
a much steeper scalability curve for phase B showing the
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Table 1: CPU utilization ratio (%) of PARSEC
benchmarks

# of
cores

bl fl fr fe x2 ra bo de ca st

6 98.6 96.7 96.4 99.9 99.5 89.0 73.7 73.9 82.1 92.6
12 93.6 90.4 86.8 92.7 97.2 78.4 55.5 59.0 71.1 80.7
18 89.8 83.4 65.4 95.4 83.9 71.9 46.4 51.1 68.5 67.3
24 85.3 74.8 68.6 87.9 72.2 62.9 39.0 44.8 69.8 56.7
30 84.4 68.0 61.3 74.7 59.3 60.2 32.5 38.8 67.3 50.6
36 80.5 62.0 43.1 82.2 46.1 50.5 29.9 34.9 66.2 45.7
42 69.6 58.8 34.9 72.6 38.7 43.8 26.8 31.4 70.4 42.3
48 85.7 54.5 44.5 72.1 33.3 37.6 24.1 28.7 65.9 37.7

highest performance at 12 cores. These graphs motivate us
to detect the phase changes online and dynamically perform
a re-partitioning. Also, we can see that the CPU utilization
ratio which can be obtained from cumulative execution cy-
cles is a good indicator to detect phase transition. Therefore,
SBMP scheduler detects the phase change by monitoring
its cumulative execution cycles. SBMP scheduler monitors
the PMUs every epoch (or time window), and whenever a
change of the counter values greater than a certain threshold
compared to the previous epoch has been observed, SBMP
scheduler enters the scalability prediction process to perform
re-scheduling.

3.4 Core Donation
The design of SBMP scheduler is described in the above

subsections, and here we introduce Core Donation, a so-
phisticated technique to improve the system performance
in SBMP scheduler. As we have shown in Figure 7, differ-
ent programs have different CPU utilization ratios. Table 1
shows the average CPU utilization ratio of PARSEC bench-
marks (benchmark names are represented with their first two
letters) for different number of cores being allocated. We can
see a trend across benchmarks that by allocating more num-
ber of cores, the CPU utilization tends to decrease. This is a
fundamental problem in multi-threaded applications which
does not have linear scalability, so we have to overcome this
tendency to achieve high performance. In addition, there are
variability in the utilization ratio that some programs have
high utilization (blackscholes, ferret, and fluidanimate)
while others have poor utilization (bodytrack and canneal).
One of the most important aspects of the OS scheduler is to
keep the CPU as busy as possible by continuously assigning
threads that are ready to execute. However, SBMP sched-
uler partitions the processor, and only a single program is
allowed to run on each core which tends to waste the pre-
cious CPU time.

We provide a solution to this problem by letting a program
which has a utilization ratio lower than a certain threshold
to be a “donor” of CPU cores (or CPU time). After allo-

cating the cores to each program, SBMP scheduler checks if
any of the program meets the requirement of a donor. If it
finds a correspondent program, SBMP scheduler picks an-
other program which benefits the most by getting additional
cores (which has a high utilization ratio and good scalabil-
ity) from the scalability-table, and sets the program as a
“donee”. SBMP scheduler allows the donee program to be
executed on the donor’s cores by allocating the program to
its original partition and also the donor’s partition. There-
fore, there are two multi-threaded applications which can
run on donor’s cores. Donee is kept from interfering with
the donor’s threads by executing its threads only when the
donor cannot utilize the CPU. We use the thread priority
mechanism to achieve this requirement by making the pri-
ority of donee program much lower than that of the donor.
This makes the situation where donor can preempt donee’s
execution while the opposite is not possible. Core Donation
is applied after core partitioning (see (3) of Figure 5).

The interesting point of Core Donation is that it works
in synergy with the SBMP scheduler by optimizing against
different granularities. SBMP scheduler assigns the cores to
programs by using the processor die as a minimal unit, which
is six cores in the evaluation platform. This is rather a coarse
grain spatial optimization while Core Donation tries to fill
in the gap and apply finer granularity optimization after a
rough optimization done by SBMP scheduler. Also, Core
Donation works in a much finer time granularity than the
original SBMP, and is possible to increase the CPU utiliza-
tion to improve system performance. Therefore, by applying
the partitioning of SBMP scheduler and the optimization of
Core Donation, the proposed set of techniques make the
most out of manycore architectures to achieve high perfor-
mance.

We have to be careful that the utilization ratio to detect a
phase change for donee programs should be only measured
at its original partition (there might be some disturbance
by the donor program at the donor’s cores). Note that each
program is allowed to either be a donor or donee but not
both, and a donor is only allowed to have one donee.

4. EXPERIMENTAL SETUP

4.1 Hardware Platform
We perform experiments on a quad socket IBM System

x3755 M3 server which consists of four 12-core AMDOpteron
6172 microprocessors running at 2.1GHz forming a 48-core
system. Each socket integrates two six-core dies with each
core having its own private L1 and L2 caches along with a
shared 12MB L3 cache. Table 2 shows relevant hardware
parameters of the evaluation platform.



Table 2: Parameters of the evaluation platform

Processor: 4 × AMD Opteron 6172
# of dies per processor 2
# of cores per die: 6
Total # of cores: 48
L3 cache size: 12MB per socket
Main memory: 96GB DDR3 PC3-10600

Table 3: Parameters of the SBMP scheduler

Threshold of
phase change detection:

Utilization ratio more than
doubles or gets smaller than

half of the previous epoch
Length of epoch: 2.5 seconds
Length of the first epoch

10 seconds
after re-scheduling:
# of samples for prediction: four points
(# of cores) (1, 12, 24 and 48)
Overhead of prediction: ≈ 550 milliseconds
Threshold of becoming a “donor”

70%
in Core Donation:

4.2 SBMP Scheduler Implementation
We have implemented a prototype of SBMP scheduler as a

user level software. The evaluation system runs Linux kernel
2.6.37.6, and the modified version of perf-tools toolset is
used to allow periodical access to the PMUs. CPU clock
frequency scaling is disabled to avoid measurement variance.
We use standard Linux API (sched_setaffinity(2) and
setpriority(2)) to control the CPU affinity of processes
to bind the programs to specific cores and to manage the
priority (niceness) of each program in order to apply Core
Donation technique.

Detailed values of parameters used inside the SBMP sched-
uler are shown in Table 3. Threshold to detect phase change
and its length of sampling epoch is experimentally obtained
by taking the overhead of prediction into account. Also, we
set the first epoch after re-scheduling to 10 seconds to pre-
vent oscillation of re-scheduling. For the sampling points,
increasing the number of samples tends to increase the fit-
ting accuracy but the associated overhead of sampling also
becomes larger (≈150ms for each sample). Therefore, we
constructed a model of all the possible combinations for each
benchmark in advance and compared the fitting accuracy to
the plot shown in Figure 4. As a result, four sample points
with 1, 12, 24 and 48 cores gave us a good balance between
fitting accuracy (coefficient of determination over 0.99) and
the overhead on average and we chose them as shown in the
table. We apply Core Donation if the utilization of any of
the programs being executed is below 70%.

4.3 Workloads
We use PARSEC benchmark suite 2.1 [4] to evaluate SBMP

scheduler against the Linux default scheduler. PARSEC
benchmark suite is designed to evaluate shared-memory com-
puters, and is composed of a set of emerging workloads
for future manycore processors. We compile PARSEC with
GCC-4.1 with“-O3 -funroll-loops -fprefetch-loop-arrays”
options. We use native input sets for all benchmarks except
dedup. Because the execution time of dedup was too short
compared to other programs, we use a larger input (the Fe-
dora 16 x86 64 DVD ISO).

We have shown 10 out of 13 PARSEC benchmarks in fig-
ures 4 and 6 where facesim, swaptions and vips are ex-

cluded because we could not correctly compile them on the
evaluation platform. Additionally, we exclude blackscholes
and fluidanimate which are categorized as Green in Fig-
ure 4. Highly scalable applications prefer being executed
in a gang-scheduling manner as shown in other work [3],
where SBMP scheduler can detect these applications as hav-
ing good scalability by checking the scalability-table, and re-
move from co-scheduling in order to perform gang-scheduling.
Although categorized as Green, we left freqmine in the eval-
uation workloads because it has a reduction operation which
shows multiple phase changes during its execution and is
used to show the effectiveness of our phase detection capa-
bility.

We evaluate SBMP scheduler with variety of workloads
where each workload is composed of four benchmark pro-
grams. SBMP scheduler is designed to optimize the schedul-
ing under multiprogramming environment with a number of
parallel programs with wide varieties of scalability, however,
increasing the number of applications within each workload
reduces the possible allocations resulting in no space to op-
timize. For example, as we give each program at least six
cores, having more than four programs within a workload
results in giving at least one program to only stick on the
minimum allocation of six cores. Therefore, we chose four
as a number to create each workload because it gives us a
good balance between the optimization flexibility as well as
enough load on the target system.

Because the main target of SBMP scheduler is efficient
co-scheduling of parallel regions of multi-threaded multipro-
gramming workloads, we use Berkeley Lab Checkpoint/Restart
(BLCR) tools [13] to set up an environment which enables
checkpoint and restart of programs to evaluate only the par-
allel region called the region of interest (ROI) of PARSEC,
which is marked in the original source code. Our evaluation
is conducted using this system running from the beginning
till the end of ROI for all benchmarks.

The evaluation methodology is similar to the one origi-
nally proposed for SMT job scheduling [26], and a number
of following work have been evaluated in a similar manner [2,
12, 15, 29]. To account for the varieties of execution times
(from tens to hundreds of seconds), we restart an applica-
tion instantaneously when it finishes execution until all the
programs are executed at least three times to completion.
We measure the execution time of each application using
the time command in Linux.

5. EVALUATION RESULTS

5.1 Programs with a Single Phase
First, we show the results with the workloads which does

not include applications that have multiple phases within
programs. For this purpose, we have set up six workloads
which include two applications classified as Red (canneal
and streamcluster), and the other two from Yellow bench-
marks (bodytrack, dedup, ferret and raytrace). The Red
applications have low scalability and thus assigning a large
number of cores will hurt system performance. Therefore,
we can see if SBMP scheduler can accurately predict the
scalability of the program. Evaluated workloads are shown
in Table 4.

Figure 8 shows the ANTT for each workload of SBMP-
base, which is the simplest implementation of SBMP sched-
uler which does not have the ability of phase prediction nor



Table 4: Multiprogrammed workloads to evaluate
SBMP-base

ID Benchmarks Type
1 bo-ca-de-st YYRR
2 bo-ca-fe-st YYRR
3 bo-ca-ra-st YYRR
4 ca-de-fe-st YYRR
5 ca-de-ra-st YYRR
6 ca-fe-ra-st YYRR

Table 5: Multiprogrammed workloads to evaluate
SBMP-PP

ID Benchmarks Type ID Benchmarks Type
7 bo-ca-fe-fr GYYR 16 de-fr-st-x2 GYYR
8 bo-ca-fr-x2 GYYR 17 fe-fr-ra-st GYYR
9 bo-fe-fr-st GYYR 18 fr-ra-st-x2 GYYR
10 bo-fr-st-x2 GYYR 19 bo-ca-fe-x2 YYYR
11 ca-de-fe-fr GYYR 20 bo-fe-st-x2 YYYR
12 ca-de-fr-x2 GYYR 21 ca-de-fe-x2 YYYR
13 ca-fe-fr-ra GYYR 22 ca-fe-ra-x2 YYYR
14 ca-fr-ra-x2 GYYR 23 de-fe-st-x2 YYYR
15 de-fe-fr-st GYYR 24 fe-ra-st-x2 YYYR

Table 6: Multiprogrammed workloads to evaluate
SBMP-CD

ID Benchmarks Type ID Benchmarks Type
25 bo-de-fe-fr GYYY 32 bo-de-ra-x2 YYYY
26 bo-de-fe-x2 GYYY 33 bo-ca-de-fe YYYR
27 bo-de-fr-ra GYYY 34 bo-ca-de-ra YYYR
28 bo-de-fr-x2 GYYY 35 bo-ca-de-x2 YYYR
29 bo-ca-de-fr GYYR 36 bo-de-fe-st YYYR
30 bo-de-fr-st GYYR 37 bo-de-ra-st YYYR
31 bo-de-fe-ra YYYY 38 bo-de-st-x2 YYYR
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Figure 8: ANTT of Linux and SBMP-base sched-
ulers for applications with a single phase.

Core Donation, is compared against Linux scheduler. Aver-
age ANTT of Linux scheduler is 1.88, and SBMP-base whose
average ANTT is 1.54 well outperforms Linux scheduler for
all the workloads evaluated. The results show that effec-
tively choosing the core allocation based on the scalability
of each program gives performance benefit over Linux sched-
uler. From these results, we can conclude that the proposed
scalability prediction algorithm described in Subsection 3.2
succeeds in predicting the scalability of programs.

5.2 Programs with Multiple Phases
Next, we present the results by evaluating the workloads

which contain applications that have multiple phases within
the program such as x264 shown in Figure 7. The evaluated
workloads are shown in Table 5. All the workloads include
two out of three applications which have multiple phases
(freqmine, ferret and x264), one from Yellow applications,
and another from Red applications.

Figure 9 shows the result of the Linux scheduler, SBMP-
base and SBMP-PP which is SBMP-base with phase pre-
diction enabled. Average ANTT of the Linux scheduler,
SBMP-base and SBMP-PP are 1.89, 2.09 and 1.77, respec-
tively. We can see that while SBMP-base shows lower per-
formance than the Linux scheduler, SBMP-PP significantly
outperforms both, showing the superiority of SBMP-PP.
The representative contribution of SBMP-PP can be seen
in many workloads such as 10, 11, 12, 13 and so on, where
SBMP-base has the worst case ANTT. Because SBMP-base
only predicts the scalability of each program at the point of
creation/termination, it tremendously suffers from making
a wrong decision at the point of re-scheduling. However, be-
cause SBMP-PP has the ability to dynamically detect phase
transition, it can recover from making a bad decision. This
reveals us that the aggressive re-scheduling based on phase
detection is beneficial for programs which are composed of
multiple phases. We have presented that detecting and op-
timizing against the scalability, which is the key insight of
SBMP scheduling, is effective in scheduling multi-threaded
multiprogramming workloads.

5.3 Programs with Various CPU Utilizations
Now, we show whether Core Donation can improve per-

formance against the Linux scheduler and SBMP-PP. The
14 workloads which are evaluated are presented in Table 6.
These workloads are comprised of two applications which
have low CPU utilization (bodytrack and dedup as can be
seen from Table 1), and all the other applications.

Figure 10 shows the performance results of the Linux
scheduler, SBMP-PP and SBMP-CD which utilizes Core
Donation technique along with SBMP-PP. The average ANTT
among the workloads of the Linux scheduler, SBMP-PP and
SBMP-CD are 2.06, 1.68 and 1.60, respectively. SBMP-
CD shows the best performance on average across the work-
loads. Because the workloads are composed of applications
which have low CPU utilization, the Linux scheduler has
the advantage of effectively utilizing the CPUs by assigning
ready-to-execute threads one after another for some work-
loads. However, SBMP-CD performs better than the Linux
scheduler by utilizing the CPU time given by the donor ap-
plications. This is well confirmed by comparing SBMP-PP
against SBMP-CD, which shows that SBMP-CD achieves
better or at least comparable performance over SBMP-PP.
This shows that the idea of donors giving the CPU time
to donees without interfering donor’s threads gives perfor-
mance improvement. Although ANTT difference between
SBMP-PP and SBMP-CD is not so large compared to other
results (Linux and SBMP-base in Figure 8, and SBMP-base
and SBMP-pp in Figure 9), we believe that by having more
number of cores on the system and broader optimization
space will widen this gap between SBMP-PP and SBMP-
CD. Also, another optimization to be considered is that a
donor having more than one donees at the same time, which
is left for future work.

5.4 Overall Performance with All Programs
Figure 11 presents the ANTT comparison of all the sched-

ulers for all 70 workloads we have evaluated. The figure
shows the workloads on the x-axis and the ANTT on the
y-axis. We present the curves independently sorted for each
scheduler. The overall average ANTT for the Linux, SBMP-
base, SBMP-PP and SBMP-CD schedulers are 1.83, 1.99,
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Figure 9: ANTT of Linux and SBMP-PP schedulers for applications with multiple phases.
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Figure 10: ANTT of Linux and SBMP-CD schedulers for applications with low CPU utilization.
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Figure 11: ANTT of all workloads.

1.70 and 1.65, respectively. As can be seen from the fig-
ure, SBMP-base scheduler shows the worst performance, and
shows 8% degradation against the Linux scheduler. Interest-
ingly, the lowest ANTT values are achieved by SBMP-base,
showing the superiority of it when there is only a single phase
within the applications. By adding the capability of phase
prediction and adaptation to SBMP-base, performance sig-
nificantly improves and outperforms the Linux scheduler for
8%. Finally, SBMP-CD shows better ANTT over SBMP-PP
for 3%, which can clearly seen from the right hand side of
figure.

6. RELATED WORK
Scheduling for multiprogrammed multi-threaded

applications: The work most close to ours is the HOLISYN
schedulers by Bhadauria and McKee [3]. The base concept of
applying dynamic space-sharing for applications that do not
scale is the same, however, they aim at dealing with scal-
ability limitation caused by hardware resource contention,
and the optimization target of their work is energy delay
product, and therefore the policy of deciding the number
of cores to allocate differs from our work. Our technique
considers the scalability of a program limited by the soft-
ware nature by predicting its scalability, and evaluated with
a 48-core system to show the effectiveness. Dynamic space-

sharing techniques are well studied in the HPC area [10,
25], and approaches to dynamically adjust the scalability of
a program is also examined [9]. Recent work called Thread
Tailor [16] proposes a dynamic compilation system that can
automatically adjusts the number of threads by combining
multiple threads together.

Avoiding contention through scheduling: OS schedul-
ing approaches to avoid contention in multicore processors
have been studied as well [12, 22, 30]. Contention in shared
resources other than LLC such as the memory controller,
prefetcher or the memory bus is also a big cause of perfor-
mance degradation. In some study, LLC miss rate is shown
to be a good indicator of shared resource intensiveness and
sensitiveness [30]. A cache model which predicts the per-
formance impact of process-to-core assignment is used in a
user level scheduler to improve performance [2]. Our work
differs from these studies in several ways but the most im-
portant point is that we target multi-threaded applications
while they concentrate on single-threaded applications.

NUMA aware systems: Recently, several work have fo-
cused on optimizing process scheduling on NUMA systems
by taking the physical locations of cores, LLC, and memory
controller into account. A simple model proposed to charac-
terize the local and remote memory system performance of
NUMA system has been evaluated [20]. In NUMA systems,
even when LLC competing threads are on the same die, the
optimal scheduling might not be separating these threads
apart because a thread being migrated will incur higher
latency for memory accesses [6, 19]. The shared resource
contention as well as data locality should be considered to-
gether to find the optimal scheduling. Our platform is also
a NUMA and NUCA system, however, SBMP scheduler has
not focused on thread migration to reduce shared resource
contention. SBMP scheduler applies a centralized thread as-
signment which minimizes the shared resource contention at
the memory hierarchy in nature. However, we have not eval-
uated throughly by considering NUMA characteristics and
we believe there is still room left for optimization. Those
are left for future work.



7. CONCLUSIONS AND FUTURE WORK
In this work, we investigate the OS scheduling for the

manycore era where various parallel applications with di-
verse scalability are co-scheduled. Traditional OS scheduler
maintains fairness by giving fair amount of CPU time to
each thread or process, however we believe that there are
two key factors that the scheduler has to be concerned: scal-
ability and CPU utilization. We have shown that scalability
of applications should be taken into account to achieve high
system performance, where the key idea is to allocate the ap-
propriate amount of shared resources to programs according
to their scalability, in order to maintain high system perfor-
mance. We have proposed a technique to dynamically pre-
dict the scalability of the program, as well as a sophisticated
phase recognition technique. We have also found that CPU
utilization of multi-threaded applications have diverse char-
acteristics, and proposed Core Donation technique which
tries to maximize the CPU utilization of the system while
still keeping the scalability into account.

We have built a prototype SBMP scheduler and com-
pared the performance with the Linux scheduler for variety
of workloads. SBMP scheduler shows higher system per-
formance compared to the Linux scheduler, indicating each
optimization technique presented in the paper is quite effec-
tive. We have not done any optimizations to avoid shared
resource contention, and there might be better scheduling
when carefully considering the NUCA and NUMA architec-
ture characteristics in detail. Exploration of the scheduler
on NUCA and NUMA architectures are left for future work.
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