
Coordinated Power-Performance Optimization in Manycores

Hiroshi Sasaki Satoshi Imamura Koji Inoue
Kyushu University

Fukuoka, Japan
{sasaki,s-imamura}@soc.ait.kyushu-u.ac.jp, inoue@ait.kyushu-u.ac.jp

Abstract—Optimizing the performance in multiprogrammed
environments, especially for workloads composed of multi-
threaded programs is a desired feature of runtime manage-
ment system in future manycore processors. At the same time,
power capping capability is required in order to improve the
reliability of microprocessor chips while reducing the costs of
power supply and thermal budgeting. This paper presents a
sophisticated runtime coordinated power-performance manage-
ment system called C-3PO, which optimizes the performance of
manycore processors under a power constraint by controlling
two software knobs: thread packing, and dynamic voltage and
frequency scaling (DVFS). The proposed solution distributes the
power budget to each program by controlling the workload
threads to be executed with appropriate number of cores and
operating frequency. The power budget is distributed carefully
in different forms (number of allocated cores or operating
frequency) depending on the power-performance characteristics
of the workload so that each program can effectively convert
the power into performance. The proposed system is based on a
heuristic algorithm which relies on runtime prediction of power
and performance via hardware performance monitoring units.
Empirical results on a 64-core platform show that C-3PO well
outperforms traditional counterparts across various PARSEC
workload mixes.

Index Terms—DVFS, manycore processor, power budget allo-
cation, power-performance optimization, runtime system, scala-
bility, thread packing.

I. INTRODUCTION

Managing power and energy consumption has become a
first-order concern in modern computer systems. With future
manycore processors being predicted to be power limited [5],
the ability to cap the peak power consumption is critical
as well as optimizing performance. In order to achieve this
goal, the power budget should be effectively transformed into
performance while fully making use of it.

Recent work has shown that performance can be optimized
under a power consumption constraint by applying thread
packing, and dynamic voltage and frequency scaling (DVFS)
in tandem [4]. Fig. 1(a) shows an example of such technique
applied to a 64-core processor where a single multithreaded
program is optimized by allocating 36 cores with maximum
frequency while keeping the rest of the cores idle with
minimum frequency.

When multithreaded programs are simultaneously executed,
the situation becomes much more complicated. One straight-
forward approach is to equally partition the resources (cores
and power budget) to each program and apply an optimization
shown in Fig. 1(a) within each partition. Fig. 1(b) shows
such an example with execution of four programs, App1,

28 cores - Min

36 cores - Max

(a)

App4
8 cores - Max

App1
16 cores

- Min

App3
16 cores

- Max

App2
12 cores

- Mid

(b)

App4
8 cores - Max

App1
24 cores

- Min

App3
16 cores

- Max

App2
12 cores

- Max

(c)

Fig. 1. Optimizing performance under a power cap. (a) A multithreaded pro-
gram being executed. (b) and (c) Four multithreaded programs simultaneously
being executed. Cores running the same program is grouped together.

App2, App3 and App4, optimized by allocating 16 cores with
minimum frequency (or 16-Min), 12-Mid, 16-Max and 8-Max,
respectively. Although the performance is locally optimized for
each partition, this is not always guaranteed to be the globally
optimal assignment. For example, consider a situation where
App3 and App4 have more power budget than are sufficient;
App3 is fully utilizing the partition with maximum frequency
but there is still surplus power (i.e., not power hungry) and
App4’s performance cannot be improved by adding extra cores
(i.e., poorly scalable). Where on the other hand, App1 and
App2 have a potential to increase their performance if more
power is allowed to be consumed.

Fig. 1(c) illustrates an example where the performance is
further improved than that of Fig. 1(b) by allowing the surplus
power of App3 and App4 to be consumed by App1 and App2
by increasing the number of cores assigned (App1) and by
operating at higher frequency (App2). The exploration space
for such global optimization is multi-dimensional where the
allocation of the number of cores and the operating frequency
of each program can be varied under two global conditions:
sum of the allocated number of cores must be less than or equal
to the total number of cores, and the power consumption must
satisfy the constraint.

This paper presents the design and implementation of
C-3PO (coordinated performance-per-power optimization), a
runtime management system for manycore processors which
attempts to maximize the performance while capping the
peak power for multiprogrammed workloads composed of
multithreaded programs. There are couple of major challenges
associated with this problem. Power-performance characteris-
tics of each program should be dynamically discovered; power
consumption must be precisely controlled in order to optimize
against power caps; and efficient power capping needs to be
performed in a global manner by taking the discovered power-
performance characteristics of all the programs into account.

To the best of our knowledge, none of the previous work has
tackled this problem.

In order to overcome the challenges, C-3PO introduces
a heuristic-based power-performance optimization algorithm
which iteratively converges to a better assignment among the
two-dimensional trade-off space composed of (1) the number
of cores to pack the entire threads and (2) the voltage and
frequency levels of active processors of each program. The
key idea of the proposed algorithm is to dynamically “salvage”
the power budget that is not contributing to performance
at runtime, and to “redistribute” it to programs which are
expected to effectively convert it into performance in the “right
way” (among two knobs), by globally considering the power
cap. Additional bonus of C-3PO is that although it is not
designed to save power consumption, it is possible to reduce
the total energy consumption of the system in many cases by
preventing the processor from wasting the power which does
not contribute to performance.

Overall, this paper makes the following major contributions:
• We present a runtime power estimation technique based

on processor utilization, number of active cores, and oper-
ating frequency. Multivariate linear regression modeling
is used to identify the coefficients associated with the
model which show coefficient of determination of over
0.93.

• We introduce a utilization-based scalability prediction
technique which identifies whether a program is effec-
tively translating the allocated computing resources into
performance or not.

• We propose C-3PO, a runtime system for manycore pro-
cessors executing multiprogrammed multithreaded work-
loads. C-3PO dynamically estimates the power consump-
tion and then salvages (if possible) and allocates the
power budget to each program based on its predicted
scalability so as to globally optimize the performance.

• We implement C-3PO on Linux where it is evaluated
on an AMD 64-core platform. Experimental results show
that C-3PO improves average performance by 21.0%
compared to Linux with DVFS for a series of multipro-
grammed workloads.

II. MOTIVATION

A. Power-Performance Analysis of Parallel Programs

Multithreaded programs show diverse power-performance
characteristics with respect to the number of allocated cores
and the operating frequency. Fig. 2 shows performance curves
along with its peak power consumption of the ROI (region
of interest) execution for two∗ PARSEC benchmarks [3],
facesim (Fig. 2(a)) and vips (Fig. 2(b)), on a 64-core SMP
platform† operated under two processor frequencies (1.4 GHz
or “Lo” and 2.6 GHz or “Hi”). The x-axis shows the number
of cores allocated to the programs where they create equal

∗Only two distinct benchmarks are shown due to space limitations.
†Evaluation system consists of four CMPs with each CMP having 16

core multi-chip module processor consisting of two eight core dies. Further
details of the experimental environment are described in Section IV.

0

0.25

0.50

0.75

1.00

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

200

400

600

800

N
or

m
al

ize
d

pe
rfo

rm
an

ce

Number of cores

Pe
ak

 p
ow

er
 [W

]

0

0.25

0.50

0.75

1.00

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
200

350

500

650

800

N
or

m
al

ize
d

pe
rfo

rm
an

ce

Number of cores

Pe
ak

 p
ow

er
 [W

]

Performance - Hi
Performance - Lo
Power - Hi
Power - Lo

(a) Facesim

0

0.25

0.50

0.75

1.00

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
200

350

500

650

800

N
or

m
al

ize
d

pe
rfo

rm
an

ce

Number of cores

Pe
ak

 p
ow

er
 [W

]

(b) Vips

Fig. 2. Power-performance characteristics of facesim and vips.

or larger number of threads than the available core count (we
pass “64” as an argument to programs), and are scheduled to
the indicated number of cores (i.e., thread packing [4]). The
y-axis on the left hand side shows the normalized performance
to the maximum performance (typically, but not necessarily,
64-cores with 2.6 GHz) and the y-axis on the right hand side
indicates the peak power consumption during the execution,
shown as lines and bars in the figures, respectively. Note that
the bottom value for the right hand side of the y-axis is 200 W.

Prior work [4] has shown that performance can be optimized
under a power consumption constraint by selecting the appro-
priate core count and the processor frequency (e.g., Fig. 1(a))
which can also be seen from Fig. 2. For example, when we
assume a power budget of 600 W (shown as a dotted line in the
figures), performance can be optimized by allocating 12 cores
and executing with 2.6 GHz (or simply 12-Hi) for facesim
while 36-Hi maximizes performance for vips.

B. Power Budget Distribution in Multiprogrammed Workloads

When executing only a single program, the power budget
can of course be totally consumed by that specific program.
Therefore, the best performing configuration (number of allo-
cated cores and the processor frequency, or simply assignment)
can be obtained by considering its power-performance charac-
teristics such as the ones shown in Fig. 2. However, finding the
globally optimal assignment for multiprogrammed workloads
is difficult because the power budget can be flexibly distributed
to each program, as described in Section I, where it is further
explained with examples in the following.

1) Controlling the number of cores and processor fre-
quency: Fig. 3 shows how the performance varies with dif-
ferent number of cores allocated to the two programs shown
in Fig. 2 when they are co-scheduled. We assume a 600 W
power budget throughout this study which is about 70% of
the peak power consumption of the platform. Fig. 3(a) shows
the result when both programs are executed with Hi frequency
without considering the power constraint and Fig. 3(b) shows
the result when the operating frequency of each program is
chosen so as to maximize the performance while keeping a
power constraint (shown as a dotted line in the figures). The x-
axis shows different configurations where the number of cores
allocated to facesim and vips are varied. The number of
cores allocated to facesim ranges from 4 to 60 in steps
of four from left to right (remaining cores are allocated to
vips while keeping all the 64 cores active). The notations
on the x-axis denote the number of cores allocated along
with the operating frequency of facesim on the top and

8-Hi
56-Hi

4-Hi
60-Hi

12-Hi
52-Hi

16-Hi
48-Hi

20-Hi
44-Hi

24-Hi
40-Hi

28-Hi
36-Hi

32-Hi
32-Hi

36-Hi
28-Hi

40-Hi
24-Hi

44-Hi
20-Hi

48-Hi
16-Hi

52-Hi
12-Hi

56-Hi
8-Hi

60-Hi
4-Hi

Fa:
Vi:

0

0.25

0.50

0.75

1.00
N

or
m

al
ize

d
pe

rfo
rm

an
ce

0
0.25
0.50
0.75
1.00

N
or

m
al

ize
d

pe
rfo

rm
an

ce

Facesim Vips Hmean speedup Power

(a) 2.6GHz execution without power capping

200

375

550

725

900

Pe
ak

 p
ow

er
 [W

]

8-Lo
56-Lo

4-Lo
60-Lo

12-Lo
52-Lo

16-Lo
48-Lo

20-Lo
44-Lo

24-Lo
40-Lo

28-Hi
36-Lo

32-Hi
32-Lo

36-Hi
28-Lo

40-Hi
24-Lo

44-Lo
20-Hi

48-Lo
16-Hi

52-Hi
12-Hi

56-Hi
8-Hi

60-Hi
4-Hi

0

0.25

0.50

0.75

1.00
N

or
m

al
ize

d
pe

rfo
rm

an
ce

0

0.25

0.50

0.75

1.00

N
or

m
al

ize
d

pe
rfo

rm
an

ce

Facesim Vips Hmean Power

(b) Frequency optimized execution with 600W power constraint

Fig. 3. Performance for simultaneous execution of facesim and vips when number of cores allocated to each program is varied (64 cores active).

16-Lo
48-Lo

0

Fa:
Vi:

Idle:

12-Hi
44-Lo

8

12-Hi
36-Lo

16

8-Hi
16-Hi

40

8-Hi
8-Hi

48

4-Hi
8-Hi

52

4-Hi
4-Hi

56

8-Hi
32-Lo

24

16-Hi
16-Hi

32

4-Hi
56-Lo

4

12-Hi
40-Lo

12

8-Hi
36-Lo

20

8-Hi
28-Lo

28

8-Hi
20-Hi

36

8-Hi
12-Hi

44

0
0.25
0.50
0.75
1.00

200
300
400
500
600

N
or

m
al

ize
d

pe
rfo

rm
an

ce

Pe
ak

 p
ow

er
 [W

]Hmean speedup Power

Fig. 4. Performance for simultaneous execution of facesim and vips when number of active cores is varied.

vips at the bottom. The y-axis on both sides are the same
as Fig. 2, while additional black bars in the figure show the
harmonic mean (hmean) of the per-application speedups with
respect to the solo runs [14] of two programs. We evaluate the
performance with hmean speedup metric because it is known
to capture a notion of both performance and fairness [6]. Note
that hmean speedup ranges from 0 to 1 and a higher value
indicates higher performance.

When executed with only Hi frequency, most configurations
except three configurations at the right end violate the power
budget of 600 W as shown in Fig. 3(a). Among these three,
the best hmean speedup of 0.39 is achieved with 52-Hi
for facesim and 12-Hi for vips. This is apparently not
optimal because allocating more than 12 cores to facesim
degrades performance as shown in Fig. 2(a). Performance can
be improved while keeping the power constraint by utilizing
different frequency pairs. As shown in Fig. 3(b), 16-Lo for
facesim and 48-Lo for vips achieves the best hmean
speedup of 0.57 with peak power consumption of 552 W. This
configuration gives us 46.1% improvement over the best pair
which only uses 2.6 GHz (52-Hi for facesim and 12-Hi for
vips). It is also interesting to see that different combinations
of processor frequencies achieve the best performance when
the number of allocated cores differs. This is because the fre-
quencies for each application have to be chosen in tandem so
that the total power consumption satisfies the power constraint.

2) Increasing the processor frequency by introducing idle
cores: So far, we have considered to utilize all the avail-
able cores, however, there is still room for improvement by
reducing the number of active cores while keeping some of
them idle. Because idle cores consume minimum power, the
processor frequency of other active cores can be increased
which leads to improved performance. Fig. 4 shows the
hmean speedup and the peak power consumption for the same
benchmark pair as Figures 2 and 3, by varying the number of

active and idle cores. The x-axis shows different configurations
whose notations are similar to Fig. 3, where each pair of bars
corresponds to the best configuration among a specific number
of active cores. For example, the left most pair shows the result
obtained from Fig. 3(b), where all the cores are active (no idle
cores), and 16-Lo for facesim and 48-Lo for vips achieves
the best performance. We evaluated all the possible pairs of
core count and processor frequency, and the pairs with the
highest hmean speedup which do not exceed 600 W are shown
in Fig. 4. Compared to the results obtained from Fig. 3(b),
performance can be improved when 4, 8, 12, 16, 32 and 36
cores are idle. The best hmean speedup of 0.68 is achieved
with 12-Hi for facesim and 44-Lo for vips while keeping
8 cores idle, which performs 19.3% better performance than
16-Lo for facesim and 48-Lo for vips. Performance boost
comes from increasing the processor frequency of facesim
execution which shows significant performance improvement
when executing with 2.6 GHz at 12 cores as can be seen
in Fig. 2(a). This example shows that the performance of
multiprogrammed workloads can be globally optimized by
trading off active cores for increased processor frequency.

C. Potential of Coordinated Optimization
To summarize this section, we compare the hmean speedup

and the peak power consumption of the best configuration, or
Globally-optimal (12-Hi for facesim, 44-Lo for vips and 8
cores idle, which corresponds to Fig. 1(c)) to other execution
policies in Fig. 5. Linux-Hi and Linux-Lo in the figure leave
the scheduling to the default Linux scheduler where they
denote executions with 2.6 GHz and 1.4 GHz, respectively.
Additionally, we show Locally-optimal, the best statically ob-
tained configuration when the resources are equally partitioned
(12-Hi for facesim, 32-Lo for vips, and 20 cores idle,
which corresponds to Fig. 1(b)).

Linux-Hi achieves hmean speedup of 0.68 which is equiva-
lent to Globally-optimal, however, its peak power consumption

853

12-Hi
44-Lo

8

Fa:
Vi:

Idle:

Locally-optimal
(Equal partitioning)

Linux
Hi

Linux
Lo

12-Hi
32-Lo

20

Fa:
Vi:

Idle:

0
0.25
0.50
0.75
1.00

200
300
400
500
600

N
or

m
al

ize
d

pe
rfo

rm
an

ce

Pe
ak

 p
ow

er
 [W

]

Hmean speedup
Power

Globally-optimal

Fig. 5. Performance for simultaneous execution of facesim and vips
with different execution policies.

of 853 W greatly exceeds the power budget. Linux-Lo stays
below the budget with peak power consumption of 555 W
while achieving hmean speed up of 0.54. Locally-optimal
achieves hmean speedup of 0.60 with peak power consumption
of 558 W which still leaves room for improvement, showing
the limit of local optimization.

Examples shown in this section demonstrate the potential of
the global optimization policy which allocates the appropriate
number of cores and the processor frequency to each program.
Because the optimal assignment depends on the workload,
their execution phases and the power budget, which might
change at runtime, the configuration cannot be statically de-
termined. Therefore, a dynamic optimization technique needs
to be established. As we have seen in the example of Fig. 3(a),
the key to achieving high performance is to not allocate extra
cores to programs which cannot benefit from it (programs with
poor scalability). Further performance optimization is possible
by considering the power budget and by carefully controlling
the two knobs as shown in Figures 3(b) and 4.

III. C-3PO RUNTIME SYSTEM

A. Overview

In this section, we introduce the proposed C-3PO (coor-
dinated performance-per-power optimization) runtime system.
The goal of the system is to optimize the performance (max-
imize the hmean speedup) of manycore processors executing
multiprogrammed workloads under a power constraint. The
system invokes an allocation function every fixed time interval,
or epoch, and determines the configuration iteratively over the
program execution. The key idea of C-3PO is to “salvage”
the power budget that is not contributing to performance
and “redistribute” to programs that would benefit from it. In
order to accurately salvage and redistribute the power budget,
performance and power of the programs need to be estimated
at runtime.

B. Online Power Estimation

In order to keep the power consumption within a power
budget, C-3PO needs to know the total power consumption
of the processor. Although some of the recent processors
equip power counters for that purpose, we estimate the
power consumption from the statistics collected via hardware
performance monitoring units (PMUs) as a more general
solution. Prior studies have shown that power consumption
can be estimated using processor utilization [7, 11] where

200

400

600

800

0 8 16 24 32 40 48 56 64

Po
w

er
 [W

]

∑ Utilization

4 - 19 20 - 35
36 - 51 52 - 64Number of cores

2.6GHz

1.4GHz

Fig. 6. Power consumption for different CPU utilizations. Results of two
levels of CPU frequencies (1.4GHz and 2.6GHz) are plotted in the figure.

Ma et al. extend the prior approaches so that DVFS can be
considered in the model [15]. They model the total power
consumption as P =

∑N
i=1 (Ui × fi ×W) + C where P is

the total power consumption, N is the total number of cores,
Ui is the utilization, which ranges from 0 to 1, of the i th
core (1 ≤ i ≤ N), fi is the frequency level of core i, W is the
coefficient of proportionality of the model and C is the idle
power of the system. Note that the static power is captured
by C. We refer to this model as the original model. We
have found that this model is not sufficient to characterize the
power consumption as it assumes that W and C are constant
regardless of the processor frequency. Therefore, we propose
a new model to overcome this issue.

W: Dynamic power consumption of a processor is propor-
tional to the product of the processor frequency (fi) and the
square of the supply voltage (which is captured by W). As
the voltage needs to be increased when operating with higher
frequency, it is quite intuitive to assume that W also increases
for higher frequency. We consider this in the model by having
different Wf for each processor frequency.

C: Fig. 6 shows power plots for 1.4 GHz and 2.6 GHz
PARSEC executions with various number of allocated cores.
The x-axis shows the sum of processor utilization of all
processors (maximum is 64 because the evaluation platform
has 64 cores) and the y-axis shows the power consumption. We
can see a trend that power and utilization have an almost linear
relationship as expected from the original model. However,
some exceptions can also be seen in the figure where plots
inside the three circles drawn are remarkable. We can see
a trend here that these plots exist in low utilization area
while having a large core count. This cannot be captured by
the constant C of the original model. The proposed model
introduces a term which indicates the static power of the active
cores. This makes the predicted power consumption possible
to differentiate between single active core with utilization 1.0
from ten cores with utilization 0.1.

The equation of the proposed model is shown as follows:
P =

∑M
i=1 (Ui × fi ×Wfi + Sfi) + C, where M is the total

number of active cores (1 ≤ M ≤ N), Wfi is the weight of
the processor frequency fi, and Sfi is the static power of an
active core with fi, and C is the constant power consumed
regardless of the activity of the system. P , i, Ui and fi are
the same as the original model. We calculate the coefficients
Wfi , and Sfi using multivariate linear regression. In order
to utilize this model at runtime, we perform the calculation

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Bodytrack

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Canneal

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Dedup

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Facesim

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Ferret

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Fluidanimate

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Freqmine

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Streamcluster

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Swaptions

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Vips

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

X264

0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.2

0.4

0.6

0.8

1.0

Blackscholes

Performance
Utilization

N
or

m
al

ize
d

pe
rfo

rm
an

ce

Pe
r-c

or
e

ut
iliz

at
io

n

Fig. 7. Normalized performance vs. per-core utilization for PARSEC benchmarks as the number of allocated cores is varied.

statically in advance. The data sets for regression is obtained
from a power meter and PMUs by running a set of programs
with each operating frequency under different number of active
cores (e.g., Fig. 6). C-3PO estimates the power consumption
at runtime using this proposed model.

C. Online Scalability Prediction

C-3PO needs to distinguish whether the program is scal-
able (i.e., benefits from having additional cores) or not at
runtime to salvage the power consumption not contributing to
performance. It is known that each thread of highly scalable
programs which favor additional cores is independent, having
less communications between each other. In other words,
highly scalable programs can fully utilize the CPU time
allocated by the OS. On the other hand, programs which do not
scale well have opposite characteristics, meaning that threads
are dependent with each other having communications and
synchronizations. This in turn makes the cores underutilized
by wasting the CPU time allocated to the program. Therefore,
we focus on the processor utilization in order to determine
whether the program is scalable or not. Fig. 7 supports
our idea, which shows the normalized performance to the
maximum performance and the per-core processor utilization
for the ROI execution of PARSEC benchmarks when different
number of cores are allocated. Note that the processor fre-
quency is set to 2.6 GHz and the per-core utilization shown in
the figure is the average across the execution.

As we have imagined, highly scalable programs such as
blackscholes, ferret, freqmine, swaptions and
vips show almost constant per-core utilization of one (i.e.,
cores fully utilized) regardless of the number of cores. Other
programs show similar trends with each other where per-
core utilization remains high when the number of allocated
cores is small while the utilization tends to decline at a
certain point, dependent on the program. We can see that
these programs show good scalability at lower number of

cores but the performance saturates or even decreases as
the per-core utilization declines. It can be seen from the
figure that programs which have modest per-core utilization
at greater number of cores (canneal, fluidanimate and
x264) show better scalability than other programs whose per-
core utilization decreases rapidly as the core count grows
(bodytrack, dedup, facesim and streamcluster).
Although accurate performance prediction is not possible by
focusing on per-core utilization, it is clear that there is no
benefit to allocate extra cores to a program whose per-core
utilization is lower than a certain threshold (e.g., 0.7). There-
fore, C-3PO utilizes this statistic as a guideline; it determines
the number of cores to allocate to each program so that the
per-core utilization does not fall below the threshold.

Focusing on the per-core utilization has two advantages over
directly measuring performance related statistics such as IPC
(instructions per cycle) or total instruction throughput in the
following ways: (1) as utilization itself is a relative value
which ranges from 0 to 1, we can set a universal threshold
that each program should not fall short, which is very difficult
for absolute values like IPC or total instruction throughput,
and (2) as we have seen in Fig. 7, per-core utilization shows
a monotonic decrease as the number of cores increases (only
exception is for canneal when core count is greater than
56), which makes C-3PO easy to control the value above a
certain threshold by simply decreasing the number of cores
until it exceeds the threshold.

D. Allocation Algorithm

We describe the algorithm of C-3PO in this subsection
which is based on the online power and performance es-
timation components described in Sections III-B and III-C,
respectively. Algorithm 1 presents an outline of C-3PO. The
allocation function is invoked every epoch where the algorithm
is designed to iteratively converge to a better allocation. The
algorithm uses the following inputs which are obtained from

Algorithm 1: C-3PO algorithm
Input: util[i], n cores[i], freq[i]
Data: surplus cores, surplus power, Threshold,Budget
Result: allocation of next epoch

1 // Step-1: Salvage underutilized cores
2 foreach application i do
3 if util[i] < Threshold and n cores[i] > x then
4 surplus cores← surplus cores+ x
5 n cores[i]← n cores[i]− x
6 end
7 end
8 // Step-2: Calculate the surplus power
9 surplus power ← UpdateSurplusPower()

10 // Step-3: Control the power
11 if surplus power > 0 then
12 DistributePower()
13 else
14 ReducePower()
15 end

PMUs of each scheduled program i: per-core processor utiliza-
tion (util[i]), number of the allocated cores (n cores[i]) and
the operating frequency (freq[i]). The algorithm effectively
works with the following initial state: (1) processor frequency
of all the cores is set to the minimum, and (2) processor cores
are equally assigned to each program (if the total number of
cores cannot be divided by the total number of programs,
surplus cores are randomly assigned). Because an optimal
assignment for a certain workload might totally be different for
another workload, freq[i] and n cores[i] are initialized when
a program terminates or a new program is being launched.

Step-1: First, for each program, C-3PO checks whether the
per-core utilization of the previous epoch is below a threshold
(Threshold) or not. If it is below Threshold, the number of
cores allocated to the program is reduced by x.

Step-2: Next, by assuming that the characteristics of the
programs do not change for the next epoch,∗ C-3PO calculates
the surplus power by subtracting the estimated power con-
sumption from the power budget (UpdateSurplusPower()).

Step-3: Finally, if the calculated surplus power is positive,
C-3PO distributes the power consumption to programs by allo-
cating additional cores or increasing the operating frequency
(DistributePower() shown in Algorithm 2). On the other
hand, if the surplus power is negative (i.e., power consumption
exceeds the power budget, for example, this might happen
if the per-core utilization increases compared to the previous
epoch), the scheduler drops the frequency level or decreases
the number of allocated cores so that the power consump-
tion stays within the power cap (ReducePower() shown in
Algorithm 3). The algorithms of DistributePower() and
ReducePower() are described in the following.

Before going into the details of DistributedPower() and
ReducePower(), we first describe the time overhead asso-
ciated with increasing/decreasing DVFS levels and allocat-
ing/deallocating cores. Although controlling the DVFS levels

∗This assumption does not always hold in practice because (1) per-core
utilization of programs whose number of allocated cores is reduced tends to
increase and/or (2) execution phase of programs might change at runtime.

Algorithm 2: DistributePower()
Input: apputil descending , app#cores ascending

1 // Step-1: Increase the # of allocated cores
2 while apputil descending 6= NULL and surplus power > 0 and

surplus cores > x do
3 if apputil descending > Threshold then
4 surplus cores← surplus cores− x
5 n cores[i]← n cores[i] + x
6 surplus power ← UpdateSurplusPower()
7 Pop(apputil descending)
8 end
9 end

10 // Step-2: Increase the operating frequency
11 sort ascending(app#cores ascending)
12 while surplus power > 0 do
13 apptmp ← app#cores ascending

14 while apptmp 6= NULL and surplus power > 0 do
15 freq[i]← freq[i] + y
16 surplus power ← UpdateSurplusPower()
17 Pop(apptmp)
18 end
19 end

Algorithm 3: ReducePower()
Input: app#cores descending , apputil ascending

1 // Step-1: Decrease the operating frequency
2 while surplus power < 0 do
3 apptmp ← app#cores descending

4 while apptmp 6= NULL and surplus power < 0 do
5 freq[i]← freq[i]− y
6 surplus power ← UpdateSurplusPower()
7 Pop(apptmp)
8 end
9 end

10 // Step-2: Decrease the # of allocated cores
11 while apputil ascending 6= NULL and surplus power < 0 do
12 if n cores[i] > x then
13 surplus cores← surplus cores+ x
14 n cores[i]← n cores[i]− x
15 end
16 surplus power ← UpdateSurplusPower()
17 Pop(apputil ascending)
18 end

and the number of allocated cores both affect the power and
performance of program executions, the amount of overhead is
quite different. Performing DVFS control can be accomplished
in tens to hundreds of micro seconds [12] because it is purely
a hardware mechanism, where changing the thread to core
allocation may incur tens of milliseconds in the worst case
because the program threads need to be migrated to different
cores when the allocation changes (thread migration is a heavy
task for an OS). Therefore, C-3PO conservatively changes the
core allocation (number of cores allocated to each program is
increased or decreased at a minimum amount at once) while
it aggressively changes the processor frequency (DVFS levels
can be increased or decreased at any level).

DistributePower() introduces the following new data as
inputs: a sorted list of programs in descending order of the
per-core utilization (apputil descending) and a sorted list of
programs in ascending order of the number of allocated cores
(app#core ascending). These lists are being sorted every time

the function is invoked. This function is comprised of two
steps which first increases the number of allocated cores and
next increases the operating frequency. Programs with high
per-core utilization are prioritized in receiving additional cores
while programs with lower number of cores are prioritized in
increasing the DVFS level. This policy is reasonable because
(1) we have shown in Fig. 7 that programs with high per-core
utilization tend to improve performance with additional cores
and (2) programs with fewer number of cores have a chance
to improve performance by increasing the processor frequency
as can be seen in Fig. 2.

First, it picks program i which is in the front of
apputil descending (i.e., program with the highest per-core
utilization) and increases the allocated number of cores by x. It
updates the surplus power and removes the element from the
front of apputil descending . This procedure is repeated until
the following conditions are valid: (I) apputil descending is
not empty, (II) updated surplus power is positive and (III)
updated surplus cores is positive. If surplus power is still
positive after this first step, it enters the second step.

First, it copies app#core ascending to apptmp because it
might reuse app#core ascending when we need to change the
processor frequency aggressively (more than y levels for a
single program). The second step is similar to the first step
but it favors the program with fewer number of allocated
cores and increases its processor frequency level by y. It
sorts app#cores ascending to earn an up-to-date list because
the number of allocated cores might have changed in Step-1.
After increasing the frequency level, it updates the surplus
power and removes the element from the front of apptmp,
and the procedure is repeated while (I) apptmp is not empty
and (II) surplus power is positive. If the surplus power is
still positive when apptmp becomes empty, it repeats the while
loop (line 12) again from copying the sorted list to apptmp.
ReducePower() increases the surplus power by operating

totally the opposite of DistributePower(). Therefore, it
introduces app#core descending and apputil ascending as new
inputs. It first controls the processor frequency because the
overhead of DVFS control is much smaller than changing the
core allocation. As its flow is similar to DistributePower(),
detailed description is omitted.

IV. EXPERIMENTAL SETUP

A. Hardware Platform

We perform experiments on a quad socket IBM System
x3755 M3 server which consists of four 16-core AMD Opteron
6282 SE microprocessors forming a 64-core platform with
96 GB of main memory. Each socket integrates two eight-core
dies with a shared 16 MB L3 cache. The processor supports
per-core frequency scaling with five different levels (1.4, 1.7,
2.0, 2.3 and 2.6 GHz). Note that Turbo Core technology [1] is
disabled to avoid undesirable power and performance variance.
The entire system power including the processors, memory and
disks is measured using the Yokogawa Electric Corporation’s
WT1600 digital power meter [19]. The power consumption is
measured every 500 ms.

TABLE I
PARAMETERS OF THE POWER ESTIMATION MODEL

f [GHz] Wf Sf C Coefficient of determination (R2)
1.4 2.09 0.10 300 0.94
1.7 2.09 0.32 300 0.93
2.0 2.19 0.47 300 0.94
2.3 2.17 1.04 300 0.93
2.6 2.39 1.03 300 0.94

TABLE II
BENCHMARK CLASSIFICATIONS

Type Benchmarks

Hi
Blackscholes (bl), Ferret (fe), Freqmine (fr),
Swaptions (sw), Vips (vi)

Mid Canneal (ca), Fluidanimate (fl), X264 (x2)

Lo
Bodytrack (bo), Dedup (de),
Facesim (fa), Streamcluster (st)

B. C-3PO Implementation

C-3PO is implemented as a user-level runtime software. The
evaluation system runs on Linux with kernel 2.6.37 where
the perf-tools toolset is used to allow periodical access
to the PMUs. The processor clock frequency is controlled
through the cpufreq interface located under /sys directory.
Standard Linux API (sched_setaffinity(2)) is used to
control the CPU affinity of processes to bind the programs
to specific cores. Detailed parameters of C-3PO are set as
follows: epoch length is 1 s considering the overhead of thread
migration vs. actual speedup (pros and cons of capturing
and responding to the execution phases), and Threshold, x
(number of cores to change) and y (DVFS levels to change)
used in the algorithms are 0.7, 4 and 1, respectively.

TABLE I shows the calculated coefficients and the coef-
ficient of determination (R2) for the power models of each
operating frequency. R2 values for all the models are greater
than 0.93, which indicates that the models fit well with the
training values (Fig. 6 shows that of 1.4 GHz and 2.6 GHz).
Although the R2 value of the proposed model is high, there
exists some amount of prediction errors in practice. Therefore,
we set the target power constraint as Preal = Ptarget + ∆,
where Preal is the 600 W power cap, Ptarget is the target
power constraint which is used internally in C-3PO, and ∆ is
the safety margin [11]. We set ∆ as 10% of Preal which has
shown to ensure power capping in most executions.

C. Workloads

We use PARSEC benchmark suite 2.1 [3] to evaluate
C-3PO and its counterparts. The benchmarks are compiled
with GCC-4.4.5. We use native input sets for all benchmarks
except dedup. Because the execution time of dedup was too
short compared to other programs, we use a larger input (the
Fedora 16 x86 64 DVD ISO file) so that the execution time
becomes comparable to other benchmarks. We use 12 out of
13 benchmarks which are shown in Fig. 7 (raytrace is
excluded because we could not compile the parallel version
of the program in our evaluation platform).

Two types of workloads are used where one is com-
posed of two benchmarks and the other is composed of four

TABLE III
BENCHMARKS FOR WORKLOAD-2 AND WORKLOAD-4

Benchmarks
Workload-2: Hi (fe, fr, vi), Mid (fl, x2, ca), Lo (bo, de, st)
Workload-4: Hi (bl, sw), Mid (fl, x2), Lo (fa, de)

benchmarks. In order to construct workloads with variety of
characteristics, we classify the benchmarks into three groups
as shown in TABLE II from the utilization curve shown
in Fig. 7 and its associated discussions presented in Sec-
tion III-C. We choose three benchmarks from each type to
construct 36 (= 9C2) workloads which are composed with two
benchmarks (Workload-2). Similarly, two benchmarks from
each type are picked to construct 15 (= 6C4) workloads
composed of four benchmarks (Workload-4). The benchmarks
are chosen such that all the 12 benchmarks are at least
selected once for either of the workload types. The benchmarks
selected are summarized in TABLE III. Note that benchmark
names are abbreviated with their first two letters shown within
parentheses in TABLE II.

Although C-3PO is designed to effectively handle simulta-
neous executions of various multithreaded programs∗, some
programs have long serial execution regions which do not
stress the system enough. Therefore, we use Berkeley Lab
Checkpoint/Restart (BLCR) tools [9] along with the hooks
library that comes with PARSEC to set up an environment
which enables checkpoint and restart of programs to evaluate
only the ROI region, by creating a checkpoint at the beginning
of ROI for each program which is modified to terminate the
execution at the end of ROI. The evaluation methodology is
similar to the one originally proposed for SMT job schedul-
ing [17] where a number of studies have been evaluated in a
similar fashion [8, 20]. To account for the variety of execution
times among programs (from tens to hundreds of seconds),
we instantaneously restart a program from the checkpoint
(beginning of ROI) when it finishes execution until all of them
are executed at least three times to completion.

D. Counterparts

1) Linux with chip-wide DVFS: This policy (Linux-DVFS)
leaves the thread allocation and scheduling to the Linux default
scheduler. It only controls the chip-wide frequency level so
that the power consumption does not exceed the power budget.
It monitors the processor utilization of the previous epoch and
estimates the power consumption from the proposed power
estimation model with the safety margin of 10%. By assuming
that the utilization value is the same for the next epoch, it
selects the highest possible processor frequency among the
five DVFS levels. The frequency is controlled every 100 ms.

2) Statically obtained locally- and globally-optimal alloca-
tions: Two statically determined allocations, Locally-optimal
(or L-opt) and Globally-optimal (or G-opt) are also evaluated
for comparisons. These are introduced in Fig. 5 and correspond

∗Note that this includes programs with serial execution phases because
the per-core utilization of such phase will be no greater than 1/n cores
(n cores: number of allocated cores) whose core count steadily decreases
while giving other programs more resources.

300

500

700

0
16
32
48
64

0 10 20 30 40 50
Execution time [s]

1.4
1.7
2.0
2.3
2.6

Measured Estimated

Freqmine Streamcluster

Phase 1 Phase 2 Phase 3

Po
w

er
 [W

]
Fr

eq
ue

nc
y

[G
H

z]

of
 c

or
es

Fig. 8. DVFS and core count control for freqmine and streamcluster
execution with C-3PO.

to the examples shown in Figures 1(b) and 1(c), respectively.
In order to obtain these best allocations, we need to execute
all the possible configurations and select the best ones, which
is unfortunately too time consuming to perform. Therefore,
we try to estimate them by calculating the hmean speedups
and the power consumption via the proposed model from the
individual performance and utilization characteristics of each
program (Fig. 7 for all the possible frequencies, which can be
easily obtained), respectively, and choose the best allocations
(L-opt and G-opt) accordingly for each workload. Note that
we assume that the power and performance of each program
are not affected by the co-scheduled programs.

V. EVALUATION RESULTS

A. Demonstration of C-3PO Execution Traces

We first demonstrate an illustrative example of the changes
in DVFS levels and allocated core count of simultaneous
execution for freqmine and streamcluster in response
to the dynamic phase transition occurred for freqmine.
Fig. 8 illustrates the changes of two knobs at the bottom
along with the measured and estimated power consumptions
on the top. Streamcluster shows constant behavior with
poor scalability throughout its execution while freqmine
dynamically changes its behavior at runtime. More specifically,
freqmine consists of three phases: it begins with a poorly
scalable phase, changes to a highly scalable phase, and again
changes to a poorly scalable phase and finishes the execution.

As simultaneous execution begins, C-3PO initializes the
DVFS levels and the core count of programs. The numbers
of cores allocated to both programs are gradually reduced
while the DVFS levels instantaneously reach the maximum.
Freqmine changes to the second phase around 8 s, where the
core count gradually increases while the DVFS level decreases
in concert. After freqmine reaches a steady state, the DVFS
level of streamcluster is reduced. The configurations stay
constant until the last phase transition occurs to freqmine
around 38 s. Once the per-core utilization of freqmine starts
to decline, the core count is reduced while the DVFS level of
streamcluster is increased to the maximum.

0.4
0.6
0.8
1.0

fe-fr fe-vi fr-vi Gmean ca-fe ca-fr ca-vi fe-fl fe-x2 fl-fr fl-vi fr-x2 vi-x2 Gmean

0.4
0.6
0.8
1.0

ca-fl ca-x2 fl-x2 Gmean

Hm
ea

n
sp

ee
du

p

bo-fe bo-fr bo-vi de-fe de-fr de-vi fe-st fr-st st-vi Gmean

0.4
0.6
0.8
1.0

Gmean	

300

500

700

fe-fr fe-vi fr-vi ca-fe ca-fr ca-vi fe-fl fe-x2 fl-fr fl-vi fr-x2 vi-x2

300

500

700

ca-fl ca-x2 fl-x2Po
w

er
 [W

]

300

500

700

bo-de bo-st de-st

bo-fe bo-fr bo-vi de-fe de-fr de-vi fe-st fr-st st-vi

bo-ca bo-fl bo-x2 ca-de ca-st de-fl de-x2 fl-st st-x2

Linux-DVFS Locally-optimal Globally-optimal C-3PO

Mid-Lo

Hi-Lo

Hi-MidHi-Hi

Mid-Mid

Lo-Lo

bo-ca bo-fl bo-x2 ca-de ca-st de-fl de-x2 fl-st st-x2 Gmean
0.4
0.6
0.8
1.0

bo-de bo-st de-st Gmean

Linux-DVFS:
Locally-optimal:
Globally-optimal:
C-3PO:

0.61
0.64
0.69
0.67

300

500

700

Average

Linux-DVFS:
Locally-optimal:
Globally-optimal:
C-3PO:

535W
494W
497W
508W

Hi-Hi

Mid-Mid

Lo-Lo

Hi-Mid

Hi-Lo

Mid-Lo

Fig. 9. Average and standard deviations of the measured power consumption (top) and hmean speedup (bottom) for all workloads of Workload-2 with
Linux-DVFS, Locally-optimal, Globally-optimal and C-3PO.

We can also see from the power trace that the estimated
power consumption is controlled to keep within the target
power consumption Ptarget = 540 W (10% safety margin is
used). The measured power consumption accurately follows
the estimated power which shows the high accuracy of the pro-
posed online power estimation technique. Another interesting
thing to be noticed is that the power consumption is controlled
around 500 W during the second phase of freqmine which
is lower than Ptarget. This is because there is enough power
budget salvaged from streamcluster, while the power
consumption is redistributed to freqmine by increasing the
core count to 48 which almost reaches its peak performance.
This means that C-3PO can improve performance and at
the same it has a chance to decrease the power and energy
consumed for the execution. This comes from C-3PO’s policy
which aims to increase the performance but does not freely
distribute the power budget it has salvaged, controlled by
monitoring the processors’ utilization.

B. Power Management Accuracy

The top figure of Fig. 9 shows the average and standard
deviations (as error bars) of the measured power consumption
for all the 36 workloads of Workload-2. The bars are grouped
with the same types of workloads (e.g., Hi-Hi, Hi-Mid, etc),
and Preal = 600 W is shown as dotted lines. The high power
estimation accuracy shown in Fig. 8 suggests reasonable online
power capping capability, which can also be seen from the bars
together with the error bars for each policy in the figure.

C. System Performance

1) Workload-2: Performance of Workload-2 are shown in
the bottom of Fig. 9 where the workloads are grouped as the
same as the power results along with geometric mean (gmean)

of the hmean speedup for each group. Before going into
the detailed results of each group, we first see the overall
gmean results which are shown in the right end of the
figure. All three policies which partitions the processor achieve
better performance than Linux-DVFS (gmean of 0.61). C-3PO
performs 9% better than Linux-DVFS, 4% better than L-opt
and 3% worse than G-opt.

C-3PO mainly has the following three advantages over
its counterparts: (I) the ability to cope with poorly scalable
programs by restricting the number of cores to allocate, (II) the
flexibility of distributing the power budget and the number of
cores to each program and (III) the ability to dynamically adapt
to execution phase changes within programs.

(I) The first advantage allows C-3PO to achieve better
performance than Linux-DVFS for workloads with Lo pro-
grams because Linux-DVFS allocates all the cores to programs
regardless of their optimal core count. Lo-Lo workloads are
remarkable where C-3PO achieves 45% better performance
than Linux-DVFS by allocating appropriate number of cores
which achieves the peak performance for programs such as
dedup or streamcluster (both 16 cores), while the
salvaged power can be redistributed to other programs. These
results along with the power results show that C-3PO executes
workloads with Lo types in a high-performance and energy-
efficient manner. It can complete the workloads in shorter
time with lower average power, which greatly reduces the
energy consumption. C-3PO shows greater performance than
Linux-DVFS, however, L-opt and G-opt achieve 9% better
performance than C-3PO for this type of workloads. This is
because the performance of Lo-Lo workloads can be optimized
with small amount of power consumption and core count,

0.2
0.3
0.4
0.5
0.6

bl-de-fa-fl bl-de-fa-sw bl-de-fa-x2 bl-de-fl-sw bl-de-fl-x2 bl-de-sw-x2 bl-fa-fl-sw bl-fa-fl-x2 bl-fa-sw-x2 bl-fl-sw-x2 de-fa-fl-sw de-fa-fl-x2 de-fa-sw-x2 de-fl-sw-x2 fa-fl-sw-x2 GmeanHm
ea

n
sp

ee
du

p

300

500

700
Po

w
er

 [W
]

AverageLinux-DVFS Locally-optimal Globally-optimal C-3PO

Fig. 10. Average and standard deviations of the measured power consumption (top) and hmean speedup (bottom) for all workloads of Workload-4 with
Linux-DVFS, Locally-optimal, Globally-optimal and C-3PO.

which means that both L-opt and G-opt result in the same
allocation.

(II) As discussed in Section I, the second advantage is
the key of C-3PO which enables further optimization against
L-opt. The results of Hi-Mid and Hi-Lo show this where
C-3PO performs 7% and 9% better than L-opt. L-opt is not
able to fully utilize the power budget for Mid and Lo programs
while Hi programs favor additional power budget, which can
be optimized in a global manner with C-3PO.

(III) Dynamically adjusting to execution phases is another
essential feature of C-3PO. As we have seen in Fig. 8,
freqmine is a program whose scalability characteristics
change time over time. X264 shows similar behavior as
well [16]. We can see that C-3PO outperforms not only L-opt
but also G-opt for 10 workloads which include these two
programs (fe-fr, fr-vi, fe-x2, fl-fr, fr-x2, vi-x2,
bo-fr, de-fr, fr-st and fl-x2).

Mid-Mid workloads show different trends compared to pre-
vious types where Linux-DVFS achieves the best performance.
This comes from the characteristics of fluidanimate and
x264 which achieve their peak performance with all the
cores allocated but not fully utilizing the processor (per-
core utilization of ≈ 0.4). Therefore, better performance
results are achieved by allowing the programs to use all the
processors without applying processor partitioning. However,
the performance gap is not significant where the gmean of this
type of workloads for Linux-DVFS and C-3PO are 0.71 and
0.65, respectively.

2) Workload-4: The power and hmean speedup for
Workload-4 are summarized in Fig. 10. We can see similar
trends for average power consumption with Fig. 9, indicating
that power capping is possible regardless of the number of
programs. On the other hand, even though the workloads
consist of a mix of programs which are diversely chosen
from types Hi, Mid and Lo, in a similar manner with
Workload-2, the performance trends are not diverse as is
the case in Workload-2 evaluation. We can see that C-3PO
achieves better performance than Linux-DVFS and L-opt for
all the 15 workloads. Similar with the results of Workload-2
which include type Lo programs, C-3PO greatly reduces the
energy consumption for some workloads. The most remarkable
result is for de-fa-sw-x2 with hmean of 0.46 which im-
proves the performance over Linux-DVFS and L-opt for 24.3%
and 31.4%, respectively; while consuming average power
of 484 W which reduces the average power consumption

against the counterparts for 16.2% and 10.4%, respectively.
These results suggest that C-3PO can effectively find a better
allocation when there exists larger optimization space. Some
workloads in Workload-2 had no optimization space left (e.g.,
Hi-Hi workloads) where workloads in Workload-4 provide
flexible optimization space which can be efficiently utilized by
C-3PO. This suggests that when more and more programs with
various characteristics are co-scheduled on future manycore
processors, the advantage of C-3PO which globally distributes
the power budget becomes apparent, resulting in high system
performance. Overall, when compared with G-opt, we can see
that C-3PO achieves equivalent gmean of 0.40, where it greatly
improves performance over both Linux-DVFS and L-opt for
21.2%.

D. Analysis of C-3PO
TABLE IV shows how close the allocations chosen by

C-3PO are against G-opt for Workload-2. Workloads are listed
with their group where the results of freqmine and x264
are excluded (21 out of 36 workloads are shown in the table)
because they show different execution phases at runtime which
makes the static allocation of G-opt suboptimal as discussed
before. We calculate the hmean speedup for every possible
allocations from the individual performance and utilization
characteristics of each program, where each row shows the
percentage of time spent with allocations which is meant to
achieve within X% (X = 5, 10 and 20) of the best statically
calculated hmean speedup (i.e, that of G-opt). We can see
from the table that, on average, 65.0% of the time is spent
with allocations which are expected to achieve hmean within
10% of the best configuration, where 90.0% of the time are
spent within 20% of it. This supports the performance results
shown in Fig. 9 where C-3PO performs comparable to G-opt.

VI. RELATED WORK

Controlling several knobs together in order to dynamically
optimize power-performance of parallel programs is studied
in the literature. For single multithreaded programs, Li and
Martinez proposed a heuristic-based mechanism to search for
the best DVFS level and core count combination [13]. Pack &
Cap [4] introduces thread packing where it orchestrates with
DVFS to maximize performance within a power cap. We study
multiprogrammed workloads that are beyond the scope of
prior work, where we need to take the power-performance
characteristics of the co-scheduled programs into account
which makes the problem more challenging.

TABLE IV
PERCENTAGE OF TIME C-3PO EXECUTED WORKLOAD-2 IN ALLOCATIONS WHICH PERFORM COMPARABLE TO GLOBALLY-OPTIMAL

Error Hi-Hi Hi-Mid Hi-Lo Mid-Mid Mid-Lo Lo-Lo gmeanfe-vi ca-fe ca-vi fe-fl fl-vi bo-fe bo-vi de-fe de-vi fe-st st-vi ca-fl bo-ca bo-fl ca-de ca-st de-fl fl-st bo-de bo-st de-st
< 5 91.7 67.7 38.2 54.9 77.2 67.0 35.1 59.1 62.7 33.0 31.4 18.8 23.9 31.2 15.0 5.1 6.4 35.0 45.7 3.3 23.9 29.6
< 10 92.6 74.3 73.2 69.3 91.7 78.2 46.4 63.4 77.1 77.1 69.2 42.0 90.9 77.8 72.0 35.8 69.0 72.7 74.9 24.8 54.9 65.0
< 20 100 96.8 100 93.0 100 97.5 78.4 78.5 79.5 98.5 99.3 89.0 94.4 95.8 79.4 72.3 89.5 98.2 90.9 78.0 89.2 90.0

Others assume a mix of single-threaded programs as target
workloads [10, 18]. Winter et al. present Steepest Drop, a
heuristic-based optimization technique which iteratively se-
lects the application and processor pair that would provide
the biggest ratio of power reduction to performance loss
when the power is over the budget [18]. C-3PO follows a
similar approach when trying to reduce the power consump-
tion. Isci et al. propose MaxBIPS policy for global power
management with per-core DVFS which takes power from low
performing program and gives it to other programs to maxi-
mize the instruction throughput [10]. Our work incorporates
thread packing where core count and DVFS level affect both
performance and power, thus cooperatively controlling these
two knobs is required.

Optimizing workloads composed of variable multithreaded
programs are also studied [2, 15, 16]. Sasaki et al. apply
thread packing to optimize performance where they utilize a
simple performance model and sampling [16], however, they
do not take DVFS control into account. Bhadauria and McKee
proposed heuristic-based scheduling techniques which also
apply thread packing in order to optimize the ED metric [2] but
they do not take DVFS into account as well. Ma et al. studied
a scalable power management technique which controls the
power consumption to stay below the budget while optimizing
the performance [15]. Contrary to the studies by Sasaki et al.,
and Bhadauria and McKee, they only consider optimizing
the DVFS level for each program because the thread count
per application is fixed a priori and is chosen such that the
sum is less than the total core count in their study. We
believe that the problem we have tackled is more general and
important considering the use of future manycore processors.
Our work has discovered a truly cooperative optimization of
thread packing and DVFS for such an important problem that
none of the previous studies have focused on.

VII. CONCLUSIONS

Future computer systems with manycore processors are
required to effectively handle diverse multithreaded programs
co-scheduled while keeping the peak power consumption
within a power budget. This work investigates the design of
an efficient runtime system which accomplishes such require-
ments by cooperating thread packing and DVFS in tandem. We
propose a system called coordinated performance-per-power
optimization or C-3PO, which corporates sophisticated online
power and performance estimation capabilities. The system is
designed to iteratively converge to a better allocation using
a heuristic mechanism along with the prediction techniques.
The key idea of C-3PO is to dynamically salvage the power
budget that is not contributing to performance and allocate
to programs which are expected to effectively convert the dis-

tributed power into performance, in a global manner. Empirical
results show that C-3PO enables precise power control, as well
as 21.2% better performance than state-of-the-art solutions,
and comparable performance to statically obtained globally
optimal allocations.

ACKNOWLEDGMENTS

This research was supported in part by New Energy and
Industrial Technology Development Organization (NEDO) and
Japan Science and Technology Agency (JST), CREST.

REFERENCES

[1] Advanced Micro Devices, “AMD ‘Bulldozer’ core technology,” white
paper, Advanced Micro Devices, 2011.

[2] M. Bhadauria and S. McKee, “An approach to resource-aware co-
scheduling for CMPs,” in ICS ’10, 2010, pp. 189–199.

[3] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, 2011.

[4] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & Cap:
adaptive DVFS and thread packing under power caps,” in MICRO 44,
2011, pp. 175–185.

[5] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA ’11,
2011, pp. 365–376.

[6] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, 2008.

[7] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ISCA ’07, 2007, pp. 13–23.

[8] A. Fedorova, M. Seltzer, and M. Smith, “Improving performance iso-
lation on chip multiprocessors via an operating system scheduler,” in
PACT ’07, 2007, pp. 25–38.

[9] P. Hargrove and J. Duell, “Berkeley lab checkpoint/restart (BLCR) for
linux clusters,” Journal of Physics: Conference Series, vol. 46, pp. 494–
499, 2006.

[10] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
maximizing performance for a given power budget,” in MICRO 39, 2006,
pp. 347–358.

[11] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in SoCC ’10, 2010, pp. 39–
50.

[12] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level
analysis of fast, per-core DVFS using on-chip switching regulators,”
in HPCA ’08, 2008, pp. 123–134.

[13] J. Li and J. F. Martinez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in HPCA ’06, 2006, pp.
77–87.

[14] K. Lun, J. Gummaraju, and M. Franklin, “Balancing thoughput and
fairness in SMT processors,” in ISPASS ’01, 2001, pp. 164–171.

[15] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-
core architectures running multi-threaded applications,” in ISCA ’11,
2011, pp. 449–460.

[16] H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura, “Scalability-based
manycore partitioning,” in PACT ’12, 2012, pp. 107–116.

[17] A. Snavely and D. Tullsen, “Symbiotic jobscheduling for a simultaneous
multithreaded processor,” in ASPLOS-IX, 2000, pp. 234–244.

[18] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread
scheduling and global power management for heterogeneous many-core
architectures,” in PACT ’10, 2010, pp. 29–40.

[19] Yokogawa Electric Corporation, “WT1600 digital power meter.”
[20] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared

resource contention in multicore processors via scheduling,” in ASP-
LOS ’10, 2010, pp. 129–142.

